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A method of minimizing numerical errors, and improving nonlinear stability and accuracy

associated with low Mach number computational aeroacoustics (CAA) is proposed. The

method consists of two levels.

From the governing equation level, we condition the Euler equations in two steps. The

first step is to split the inviscid flux derivatives into a conservative and a non-conservative

portion that satisfies a so called generalized energy estimate [1]. This involves the sym-

metrization of the Euler equations via a transformation of variables that are functions

of the physical entropy (Harten [2]). This splitting of the flux derivatives, hereafter,

is referred to as the entropy splitting. The split form of the the Euler equations was

found to require less numerical dissipation than its un-split counterpart in association

with non-dissipative spatial central schemes [3]. Owing to the large disparity of acoustic

and stagnation quantities in low Mach number aeroacoustics, the second step is to re-

formulate the split Euler equations in perturbation form with the new unknowns as the

small changes of the conservative variables with respect to their large stagnation values

[4]. Nonlinearities and the conservative portion of the split flux derivatives are retained.

This perturbation form was shown to minimize numerical cancellation errors compared

to the original conservation laws [4].

From the numerical scheme level, a stable sixth-order central interior scheme with a

third-order boundary schemes that satisfies the discrete analogue of the integration-by-

parts procedure used in the continuous energy estimate (summation-by-parts property)

is employed [5]. To suppress the spurious high frequency oscillations associated with

central schemes, the characteristic filter method of Yee et al. [6] is used. The discrete

scalar product is based on a diagonal matrix. The metric terms in the general coordinate

transformation are discretized by the same difference operator as the flow variables leading

to freestream preservation (uniform flow conservation) for the conservative portion of the

split equations. The time derivative is approximated by a 4-stage low-storage second-order

explicit Runge-Kutta method.

Numerical Experiments

The method has been applied to simulate vortex sound at low Mach numbers. We

consider the Kirchhoff vortex, which is an elliptical patch of constant vorticity rotating

with constant angular frequency in irrotational flow. The acoustic pressure generated

by the Kirchhoff vortex is governed by the 2D Helmholtz equation, which can be solved

analytically using the separation of variables [7].

A polar grid of 129 × 24 in the radial and circumferential directions_ respectively, is

used. The inner circular boundary with radius R almost coincides with the nearly circular

Kirchhoff vortex, which is started instantaneously. Its semi-axes are R(1 i e), and its



angular frequencyis _. Thus, the wavenumber is k = 2_/Co. We choose e = 0.00125 and

the Helmholtz number 7-I = kR = 1. The exact analytical solution at the inner circular

boundary is prescribed as initial and boundary conditions.

After 100 time steps, the Kirchhoff vortex has rotated 7.5 radians. The computed

acoustic pressure along the positive x-axis in Fig. 1 is in good agreement with the an-

alytical solution between the inner boundary and the location (x _ 16), up to which

the pressure wave has travelled from the instantaneously started Kirchhoff vortex. The

quadrupole structure of the acoustic pressure is correctly recovered in Fig. 2.

Discussion and Final Paper

The analytical solution is not valid for the instantaneously started Kirchhoff vortex.

It is only valid for a Kirchhoff vortex, which has been rotating forever. However, since

no wave is travelling from the farfield towards the Kirchhoff vortex, as long as we have

stagnation conditions in the farfield, we can assume that the analytical solution for the

Kirchhoff vortex rotating for infinitely long time is valid up to the wavefront of the instan-

taneously started Kirchhoff vortex. If the wavefront has left the domain without reflection

at the farfield, the analytical solutions for the instantaneously started Kirchhoff vortex

and for the infinitely long rotating Kirchhoff vortex should agree.

At x _ 16, we see that in general the wavefront cannot match the infinitely long

rotating Kirchhoff vortex solution, because the instantaneously started Kirchhoff vortex

has zero acoustic pressure downstream of the wavefront. Therefore, we cannot expect

agreement of the two solutions near the wavefront. Thus, the discrepancies between the

numerical solution for the instantaneously started Kirchhoff vortex and the analytical

solution for the infinitely long rotating Kirchhoff vortex have physical reasons. Of course,

the numerical difficulties in treating the wavefront and the use of a second-order time

discretization (with non-optimal phase error) might contribute to the discrepancies.

Two additional major issues are nonreflecting farfield boundary conditions to allow

the wavefront to leave the domain without reflection_ and the boundary conditions at

the Kirchhoff vortex need to be implemented such that the summation-by-parts (SBP)

property is not destroyed. At present, nonreflecting farfield boundary conditions have

not been implemented. The so called injection method of implementing the numerical

boundary conditions on the conservative and entropy variables but not the characteristic

variables is used. The SBP is not guaranteed. These will be addressed in the final paper.
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Figure 1" Comparison of exact and computed acoustic pressure for Kirchhoff vortex sound.
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Figure 2: Computed acoustic pressure contours for Kirchhoff vortex sound.


